721. Thermodynamics of Hydrocarbon Mixtures. Part III.* The Heats of Mixing of Ternary, Quaternary, and Quinary Mixtures formed by Benzene, cycloHexane, Heptane, Toluene, and Hexane.

By A. R. MATHIESON and J. C. J. THYNNE.

The heats of mixing of ternary, quaternary, and quinary systems formed by benzene, toluene, *cyclo*hexane, hexane, and heptane have been measured at 20° c in order to examine various equations which enable the heats of mixing of multicomponent mixtures to be predicted from a knowledge of the heats of mixing of the constituent binary mixtures. It has been found that values agreeing to within the limit of experimental error with those measured may be predicted by some of these equations. An empirical equation has also been suggested.

By using the method described in Part I,¹ the heats of mixing of multicomponent hydrocarbon mixtures have been measured. For quaternary and quinary mixtures a known amount of a binary mixture, which was contained in the sealed glass ampoule, was mixed with a known amount of a second binary (or ternary) mixture, and the heat of mixing was measured. Since the heats of mixing for both of the mixtures were known at the concentrations used, the total heat of mixing for the multicomponent mixture could be determined.

- * Part II, preceding paper.
- ¹ Part I, J., 1955, 4141.

Since this technique involved two sets of concentration determinations, together with errors in the measurement of temperature and in extrapolation, the estimated experimental error is larger than the error involved in work on binary mixtures, and the percentage errors are estimated as $\pm 3\%$ for ternary systems, $\pm 5\%$ for quaternary systems, and about $\pm 6\%$ for quinary systems.

RESULTS

Properties of the Materials.—These were the same as for the liquids described in Parts I and II.1,2

Heats of Mixing at 20° c.—In Tables 1—9 the subscript numerals given to x correspond to the order of citation of compounds in the Table heading. ΔH_m is expressed in J/mole throughout.

DISCUSSION

Tables 1—9 show the results for the heats of mixing at 20° c of six of the ternary mixtures, two of the quaternary mixtures, and the quinary mixture formed by benzene, toluene, cyclohexane, hexane, and heptane. The results for the ternary mixture, benzenecyclohexane-heptane have already been reported.¹

Several equations have been suggested to enable the heats of mixing of multicomponent systems to be predicted from the heats of mixing of the constituent binary mixtures.

That suggested by Redlich and Kister³ can be expressed for a ternary mixture as:

$$\Delta H_{123} = x_1^{1} x_2^{1} [H_{12}^{\circ} + H_{12}^{1} (x_1^{1} - x_2^{1}) + H_{12}^{11} (x_1^{1} - x_2^{1})^2 \dots] + x_2^{1} x_3^{1} [H_{23}^{\circ} + H_{23}^{1} (x_2^{1} - x_3^{1}) + H_{23}^{11} (x_2^{1} - x_3^{1})^2 \dots] + x_1^{1} x_3^{1} [H_{13}^{\circ} + H_{13}^{1} (x_1^{1} - x_3^{1}) + H_{13}^{11} (x_1^{1} - x_3^{1})^2 \dots]$$
(1)

where $H_{12} = x_1 x_2 [H_{12}^{\circ} + H_{12}^{1} (x_1 - x_2) + H_{12}^{11} (x_1 - x_2)^2 \dots]$ etc. and x_1^1 , x_2^1 , and x_3^1 are the ternary mole fractions and x_1, x_2 the binary.

For a quaternary mixture, eqn. 1 will consist of six terms involving the binary equations, and for the quinary mixture there will be ten such terms.

Eqn. 1 has been modified ⁴ by replacing all difference terms involving x_1 , e.g. $(x_1 - x_2)$, by $(2x_1 - 1)$. Thus, when the modified form of eqn. 1 is applied to ternary mixtures only two terms, namely $(x_1^{1} - x_2^{1})$ and $(x_1^{1} - x_3^{1})$, will need to be replaced by $(2x_1^{1} - 1)$. For the quaternary mixture three terms will be replaced, and for quinary mixtures the four terms involving x_1^1 will be replaced by $(2x_1^1 - 1)$. This modification (which will be referred to as eqn. 2) was originally intended for mixtures containing one polar component, or for mixtures where one of the components was appreciably different in some manner from the others.

A combination of eqns. 1 and 2 enables the following equation to be obtained for ternary mixtures :

$$\Delta H_{123} = x_1^{1} x_2^{1} [H_{12}^{\circ} + H_{12}^{1} (x_1^{1} - x_2^{1} - x_3^{1}/2) + H_{12}^{11} (x_1^{1} - x_2^{1} - x_3^{1}/2)^{2} + \dots] + x_1^{1} x_3^{1} [H_{13}^{\circ} + H_{13}^{1} (x_1^{1} - x_3^{1} - x_2^{1}/2) + H_{13}^{11} (x_1^{1} - x_3^{1} - x_2^{1}/2)^{2} + \dots] + x_2^{1} x_3^{1} [H_{23}^{\circ} + H_{23}^{1} (x_2^{1} - x_3^{1}) + H_{23}^{11} (x_2^{1} - x_3^{1})^{2} + \dots]$$
(4)

i.e. difference terms involving x_1^1 , *e.g.* $(x_1^1 - x_2^1)$, are replaced by $(x_1^1 - x_2^1 - x_3^1/2)$. For quaternary and quinary mixtures the replacement terms for $(x_1^1 - x_2^1)$ will be :

$$[x_1^1 - x_2^1 - (x_3^1 + x_4^1)/2]$$
 and $[x_1^1 - x_2^1 - (x_3^1 + x_4^1 + x_5^1)/2]$, respectively

This equation will be referred to as eqn. 4.

Part II, Mathieson and Thynne, preceding paper.
Redlich and Kister, Ind. Eng. Chem., 1948, 40, 31.
Scatchard, Goates, Ticknor, and Macastney, J. Amer. Chem. Soc., 1952, 74, 3724.

[1956] Thermodynamics of Hydrocarbon Mixtures. Part III. 3715

Tsao and Smith⁵ proposed an equation for the prediction of the heats of mixing of ternary systems which may be stated :

$$\Delta H_{123} = H_{12}[x_2^{-1}/(x_2^{-1} + x_3^{-1})] + H_{13}[x_3^{-1}/(x_2^{-1} + x_3^{-1})] + H_{23}(1 - x_1^{-1}) \quad . \quad (3)$$

where, as before :

$$H_{12} = x_1 x_2 [H_{12}^{\circ} + H_{12}^{1} (x_1 - x_2) + H_{12}^{11} (x_1 - x_2)^2 + \dots] \text{ etc.}$$

The values of the heats of mixing calculated from eqns. 1-4 are shown together with the experimental values in Tables 1-9. When eqn. 1 was applied to the 73 results obtained for the ternary systems (*i.e.* including 31 results given in Part I) then an average deviation

TABLE 1.	Benzene–cycl	ohexane–i	hexane.
			A T T

				ΔH_m					
<i>x</i> ₁	x _s	<i>x</i> 3	Exptl.	Eqn. 1	Eqn. 2	Eqn. 3	Eqn. 4		
0.266	0.398	0.335	745	761	699	950	695		
0.383	0.335	0.282	874	895	841	996	866		
0.307	0.376	0.312	803	820	757	983	787		
0.344	0.356	0.300	841	854	799	996	828		
0.424	0.282	0.294	866	920	870	979	895		
0.455	0.230	0.315	870	912	870	937	895		
0.578	0.250	0.172	883	912 912	887	799	895		
0.359	0.479	0.162	816	841	795	912	812		
0.309	0.475	0.174	757	782	732	887	749		
0.303	0.527	0.174	741	761	732 711	874	732		
0.300	0.578	0.122	741	741	695	803	711		
		TABLE	2. Benzen	ie–toluene–h	eptane.				
0.166	0.733	0.101	293	268	284	406	280		
0.161	0.741	0.098	284	255	272	397	268		
0.144	0.768	0.088	255	235	242	351	203		
0.144 0.308		0.088	233 640	640	682	766	644		
	0.400			678					
0.437	0.298	0.265	695		715	833	686		
0.673	0.232	0.095	393	377	393	540	368		
0.320	0.458	0.222	552	548	586	506	573		
		TABLE		1e–toluene–h					
0.073	0.716	0.211	222	192	205	351	201		
0.073	0.715	0.212	222	192	205	351	201		
0.084	0.675	0.241	238	217	234	414	230		
0.079	0.693	0.228	238	209	222	385	217		
0.078	0.698	0.224	251	209	222	385	217		
0.182	0.294	0.524	519	494	523	686	498		
0.204	0.209	0.587	602	565	590	711	556		
		TABLE 4.		cyclo <i>hexane</i>	-				
0.157	0.767	0.076	402	364	364	435	368		
0.183	0.401	0.416	510	527	531	628	527		
0.404	0.398	0.198	623	653	657	858	657		
0.480	0.271	0.249	703	661	669	849	669		
0.647	0.235	0.118	531	577	577	711	577		
0.649	0.198	0.123	548	573	577	707	573		
		TABLE 5.		cyclo <i>hexane</i>					
0.360	0.450	0.190	615	586	590	753	586		
0.384	0.434	0.182	602	594	598	753	598		
0.722	0.192	0.083	481	464	469	577	469		
0.749	0.177	0.074	435	435	439	536	439		
0.785	0.150	0.065	393	389	389	473	389		
		TABLE 6.		<i>toluene</i> –cycl					
0.174	0.255	0.571	602	640	678	527	6 61		
0.261	0.239	0.200	669	707	741	636	749		
0.338	0.245	0.412	741	728	749	736	741		
0.386	0.296	0.318	678	661	669	782	6 6 9		
0.462	0.284	0.254	602	611	611	761	615		
0.562	0.239	0.198	536	519	510	686	515		

⁵ Tsao and Smith, "Applied Thermodynamics," Chem. Eng. Progr. Symp. Series No. 7, 1953, 49, 107.

TABLE 7. Toluene-cyclohexane-heptane-hexa	zne.
---	------

				Ū	ΔH_m				
<i>x</i> ₁	x_2	<i>x</i> ₃	x_4	í	Exptl.]	Eqn. 1	Eqn. 2	Eqn. 4
0.170	0.383	0.124	0.32		473		464	464	464
0.456	0.166	0.266	0.11	2	565		611	607	611
0.188	0.423	0.137	0.24		510		498	494	494
0.166	0.347	0.121	0.36		427		448	448	448
0.180	0.178	0.300	0.34		389		423	427	423
0.225	0.147	0.255	0.37		435		444	452	448
0.207	0.136	0.200	0.45		410		418	423	418
0.216	0.142	0.300	0.34	12	410		440	448	444
		TABLE 8.				hepta	ne–hexane		
0.360	0.148	0.220	0.27		833		912	849	883
0.275	0.302	0.167	0.25		782		829	766	782
0.342	0.211	0.208	0.23		874		912	829	874
0.194	0.319	0.235	0.25		636		699	619	657
0.375	0.231	0.171	0.22		920		946	879	904
0.289	0.269	0.199	0.24		816		854	766	808
0.312	0.226	0.189	0.27		879		912	858	879
0.193	0.318	0.221	0.26		657		695	615	657
0.500	0.137	0.247	0.11		987		1000	941	979
0.364	0.225	0.222	0.18		891		946	862	904
0.185	0.153	0.309	0.35		602		623	556	598
0.157	0.129	0.430	0.28		531		548	490	535
0.492	0.190	0.239	0.08		954		1017	962	996
0.198	0.421	0.311	0.00		686		720	640	678
0.212	0.479	0.236	0.07		715		724	644	678
	Ταβι	LE 9. Ben	zene–tolu	<i>ene</i> –cyc	lohex	ane–h	exane–he‡		
					ΔΗ _m				
<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	<i>x</i> .	× 5	I	Exptl.	Eqn. 1	Eqn. 2	Eqn. 4
0.290	0.198	0.238	0.099	0.175		812	845	836	849
0.192	0.172	0.216	0.086	0.234		766	791	795	799
0.235	0.174	0.290	0.087	0.214		766	828	828	828
0.335	0.204	0.207	0.101	0.153		816	845	833	841
0.156	0.152	0.449	0.101	0.142		674	711	732	728
0.255	0.154	0.370	0.104	0.116		766	816	828	828
0.267	0.278	0.175	0.118	0.162		732	787	770	787
0.208	0.208	0.284	0.240	0.060		745	766	766	770
0.293	0.158	0.337	0.105	0.107		782	841	849	849
0.299	0.165	0.246	0.109	0.181		833	862	849	862
0·291 0·183	0·207 0·151	0·240 0·302	0·202 0·254	0·060 0·110		812	812 745	804 741	812 749
$0.183 \\ 0.230$	0.131 0.143	0·302 0·284	$0.234 \\ 0.239$			$724 \\ 791$	745 791	741 778	749 791
0.250	0.143	0.284	0.239	0·104 0·157		766	791 782	766	791 782
0.238	0.287 0.145	0.198	0.120	0.137		820	891	874	883
0.347	0.245	0.138	0.095	0.210		820 770	820	803	816
0.233	0.184	0.135	0.035	0.178		791	858	836	836
0.308	0.193	0.207	0.105	0.187		782	853	836	849
0.000	0 100	5 201	0 100	0 107		.02	000	000	010

of the predicted heat of mixing from the measured heat of +0.9% was observed. The average deviation given by eqn. 2 was -0.8%, and by eqn. 4 less than +0.1%. These deviations lie well within the range of experimental error. Eqn. 3 gives a much poorer representation of the results, the average deviation being +8.1%.

Application of eqns. 1, 2, and 4 to the quaternary mixtures resulted in average deviations of +4.5, -1.6, and +1.5%, respectively. Since the experimental error is about $\pm5\%$ for such mixtures, these deviations are satisfactory.

The average deviations for the quinary mixture were, for equations 1, 2, and 4, $+5\cdot0$, $+4\cdot2$, and $+5\cdot1\%$, respectively. These values are rather high, but again in view of the possible experimental error, are reasonable.

From a consideration of these results, it seems that for hydrocarbon systems the heats of mixing of multicomponent systems may be predicted with considerable accuracy, when the heats of mixing of the constituent binary mixtures are known.

We thank British Petroleum Co. Ltd. for generous financial assistance.

THE UNIVERSITY, NOTTINGHAM.

[Received, May 2nd, 1956.]